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ABSTRACT

Reinforcement learning (RL) is a promising approach to generate treatment poli-
cies for sepsis patients in intensive care. While retrospective evaluation metrics
show decreased mortality when these policies are followed, studies with clinicians
suggest their recommendations are often spurious. We propose that these short-
comings may be due to lack of diversity in observed actions and outcomes in the
training data, and we construct experiments to investigate the feasibility of predict-
ing sepsis disease severity changes due to clinician actions. Preliminary results
suggest incorporating action information does not significantly improve model
performance, indicating that clinician actions may not be sufficiently variable to
yield measurable effects on disease progression. We discuss the implications of
these findings for optimizing sepsis treatment.

1 INTRODUCTION

Sepsis is a leading cause of death in hospitals, and there is currently little clinical consensus around
best practices for treatment (Centers for Disease Control and Prevention, 2021). Several recent
works have applied reinforcement learning (RL) methods in efforts to support clinicians’ decision-
making on sepsis patients in the intensive care unit (ICU). While these algorithms have shown
promise when evaluated using off-policy policy evaluation (OPE) methods, they have also been
critiqued for recommending incorrect and even dangerous treatment plans, particularly for more
severely ill patients (Jeter et al., 2019; Sivaraman et al., 2023). Due to ethical concerns around
prospectively evaluating these models, it is currently an open question whether it is possible to
derive policies from public observational datasets that truly improve current clinical practice.

To produce meaningful recommendations with adequate data support, we propose that patient trajec-
tory datasets should exhibit diversity in observed actions that correlates with differences in outcomes
conditioned on a particular state. In the RL formulation shown in Fig. 1, we assume that for a given
state st we can estimate not only the cumulative reward of taking observed action at, but also the
reward for taking a different action a′t. This would allow the offline-trained RL agent to accurately
choose between at or a′t despite having only observed directly the results of the former action.

It is difficult to measure action and outcome diversity conditioned on states directly, since this can
depend heavily on how the state is represented. Instead, we constructed an experiment in which we
trained transformer-based dynamics models to predict future disease severity given a patient’s state
and optionally the treatment actions that were taken over the subsequent hours. If clinician actions
are diverse and have an effect on outcomes, then the action information should improve a model’s
ability to predict future observed disease severity. Below we present preliminary results from this
experiment and discuss their implications for future efforts to optimize sepsis treatment.
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Figure 1: Markov decision process model for patients with sepsis in the ICU. st represents the patient
state at time t, at represents a treatment action, and yt represents a function of the state that captures
the patient’s disease severity. Brackets indicate how these values are used in our experiment.

2 RELATED WORK

Several studies (Raghu et al., 2017; Peng et al., 2018; Yu et al., 2019; Liu et al., 2021; Ju et al.,
2021) have applied RL to train treatment policies for sepsis patients. For instance, the AI Clinician
agent proposed by Komorowski et al. (2018) utilized tabular Q-learning, while subsequent works
have proposed combining deep RL with kernel-based RL (Peng et al., 2018), applying deep inverse
RL (Yu et al., 2019), integrating physiological models (Nanayakkara et al., 2022), and improving
sample efficiency by focusing on important timesteps (Liang et al., 2022; Ju et al., 2021)). Tang
et al. (2023) further introduced an approach that leverages factored action spaces to improve the
efficiency of offline RL in healthcare settings.

Other research highlights the challenges and shortcomings of these algorithmic approaches. For
example, Killian et al. (2020) found that even powerful sequential models were unable to accurately
separate patient state representation by mortality. Jeter et al. (2019) suggested that the Q-learning
approach may learn to recommend dangerous treatments for severely ill patients because the most
common clinician actions have consistently low rewards, whereas rarer actions may have high but
noisy estimated values. Gottesman et al. (2020) proposed improving RL policy evaluation by iden-
tifying timepoints with a high OPE weight, while Ji et al. (2021) selected and visualized trajectories
that may explain policy behavior. To our knowledge, however, predicting future disease outcomes
from actions has not been examined as a way to evaluate the feasibility of off-policy RL in sepsis.

3 METHODS

3.1 DATA AND PREPROCESSING

Patient trajectory data was extracted following Komorowski et al. (2018) and Killian et al. (2020)
from MIMIC-IV (Johnson et al., 2020) and the eICU Collaborative Research Database (Pollard
et al., 2018).12 Data was aggregated at one-hour intervals, and patients with more than 14 days in
the ICU were excluded. Missing data was imputed using a transformer-based autoencoder model.
This resulted in a total of 2,060,446 timesteps from 33,779 patients.

The state space for our models consisted of 60 normalized observation variables (vitals, labs, prior
treatments, and fluid balances) and 35 demographic variables (age, gender, and Elixhauser comor-
bidities). The action space comprised log-transformed continuous-valued dosages of IV fluids and
vasopressors. Three widely-used severity metrics were used as outcomes: the Sequential Organ
Failure Assessment (SOFA) score, the Systemic Inflammatory Response Syndrome (SIRS) score,
and Shock Index. Actions and disease severity were z-transformed for model input and output.

1While previous work has generally used MIMIC-III, the AI Clinician modeling procedure has been shown
to yield consistent results in the two versions of MIMIC (Sivaraman et al., 2023).

2Preprocessing and modeling code available at https://github.com/cmudig/
AI-Clinician-MIMICIV.
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3.2 MODELS

Dynamics models Our experiment utilized decoder-only transformer models, where each input
“token” comprised embeddings of the patient’s observed state, demographics, and actions.3 The
model consisted of two transformer blocks, each comprising 4 self-attention layers, each with 16
attention heads and a total dimension of 1024. The first transformer block took the state and demo-
graphic embeddings as input, while the second transformer block added embedded clinician actions.
Models were trained on the future disease severity task along with three other proxy tasks: (1) pre-
dicting the current state of the patient, (2) predicting whether the current state is the last step in
the patient’s trajectory, and (3) predicting whether two embeddings correspond to states that are
adjacent in time. The proxy tasks were included only to improve the model’s convergence and
generalizability, and results for these tasks are not shown.

Behavior cloning While the dynamics models described above aimed to predict the difference in
disease severity as a function of states and actions, we also trained behavior cloning models to predict
clinician actions as a function of states. These models utilized the first transformer block from above
to encode the state observations and demographics, then applied a two-layer feedforward network
to simultaneously predict fluid and vasopressor dosages at one-hour intervals up to 6 hours ahead.

4 EXPERIMENT RESULTS

4.1 INFLUENCE OF ACTION INPUTS ON DISEASE SEVERITY PREDICTIONS

Three groups of models, totaling 81 dynamics models, were trained to predict changes in future dis-
ease severity. The first group was trained with both future action information and state information.
In contrast, the second group, featuring identical architectures, had all future actions set to the mean
action values (effectively removing them from training). The last group also shared identical archi-
tectures, but was trained without the information about states. Furthermore, disease severity changes
were measured according to the three metrics described above at 6 hours, 12 hours, and 18 hours
ahead. Each model configuration was trained and evaluated across three random weight initializa-
tions. We then conducted four evaluations for each model by generating predictions on variants of
the test dataset: True (original treatment actions), Zero (all dosage values set to zero), Shuffled
(real but randomly-permuted dosages), and Mean (all actions replaced with the mean dosages). Fig.
2 shows the root mean squared error (RMSE) of these predictions in z-scaled space, as well as two
examples comparing model predictions to ground-truth.

Overall, the RMSE was almost constant across training conditions and action input types except for
the Mean condition, which generally showed higher error and variance across initializations when
actions were used in training (likely because consistently receiving nonzero fluids and vasopressors
is a highly unusual input). Among the other three conditions, the range of RMSEs was within
0.05 for SIRS and Shock Index, and within 0.1 for SOFA. Furthermore, performance in the True
condition was highly similar whether or not actions were provided during training. This null result
suggests that actions did not substantially improve the model fit, consistent with our hypothesis that
they are not diverse enough for policy learning. In addition, models trained without state information
showed similar trends, indicating that action information is largely redundant with the states.

4.2 PREDICTION OF FUTURE ACTIONS WITH BEHAVIOR CLONING

To evaluate the predictability of actions from states more directly, we trained 3 replicates of the be-
havior cloning model with different random weight initializations. If these models showed a strong
fit to the data, one could infer that actions were fully consistent and predictable across clinicians.

Fig. 3 shows that the average R2 correlations between the true and predicted actions (in log-
transformed and z-scaled units) were overall low, particularly after several hours. IV fluid pre-
dictions were markedly less correlated with the true values than vasopressor predictions, perhaps
because (1) vasopressors are more commonly zero than fluids, increasing the overall predictability

3We conducted the same experiments with linear and recurrent networks as well as XGBoost models, but
found that transformers yielded the best performance.
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Figure 2: Left: RMSE (lower is better) of the predicted change in disease severity across training
schemes (“Train Actions”, “Train States,” and “Train States + Actions”) and action inputs at test time
(True, Zero, Shuffled, and Mean). Error bars indicate the standard deviation across three random
weight initializations. Note that all units are in z-scaled space, so an RMSE of 1 corresponds to 1
standard deviation in the severity metric. Right: example histograms comparing true and predicted
changes in SOFA score at 12 hours ahead, in the True and Shuffled evaluation conditions.

of vasopressor use, or because (2) the amount of IV fluid used is generally more clinician-dependent.
The regression models also appeared to struggle with the wide range of fluid dosage values, and
tended to predict values within a more constrained range (Fig. 3, third panel).

Aside from the possible modeling issues in the IV fluid predictions, the low correlations across
both treatments suggest there is in fact some diversity in clinician actions that could benefit policy
learning. However, action diversity does not necessarily correspond to observable differences in
outcomes, since there is likely a range of treatment dosages that correspond to similar effects for a
given patient state. The results in the preceding section suggest that even when dosage differences
exist, they may not yield sufficient differences in outcomes to provide a useful signal to an RL agent.
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Figure 3: Left: correlations between true and predicted normalized actions from 1 to 6 hours ahead.
Right: example histograms of correlations between true and predicted normalized actions at 6 hours.

5 DISCUSSION

This work explored the impact of clinician actions on the predictability of future changes in sepsis
disease severity, in order to gain insight into whether actions have sufficient diversity to support
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accurate RL-based policies. We found that action information does not confer substantive improve-
ments in dynamics model fit, as our transformer models could predict future disease severity almost
equally well with or without true actions as input. Taken alone, the dynamics model results in Sec.
4.1 might suggest that actions are fully predictable from the states and there was no need to learn
from the action inputs. This echoes results from Beaulieu-Jones et al. (2021), who critique patient
risk predictions as “looking over the shoulders of clinicians.” However, action prediction (Sec. 4.2)
was still fairly noisy, indicating that while variation in actions exists, it is not enough to cause mea-
surable differences in outcomes in our sepsis cohort. Rather, the outcome differences we observe
may be more driven by unobserved patient variables or natural random variation.

Some of the observed lack of diversity in actions on MIMIC data may be due to inherent challenges
in working with patient trajectories. For instance, there may only be a small number of treatment
possibilities that are clinically feasible and safe, limiting the space of actions that clinicians could
take. Clinicians may also tend to choose actions in predefined patterns, such as monotonically
increasing or decreasing dosages, that appear diverse yet lead to consistent outcomes. Alternatively,
missing data imputation could have caused patient states and actions to appear more consistent than
they really are. These obstacles are likely to exist in any patient treatment dataset, underscoring the
importance of using learning methods that are robust to missingness and a constrained action space.

Another possible explanation for our results is that our models simply didn’t learn to use actions
effectively, and a better model formulation might yield more pronounced differences between the
“Train States” and “Train States + Actions” models. It is impossible to determine a priori whether
there exists a more effective way to use actions, but we conjecture that if such a method exists, it
would likely require more clinically-informed descriptions of actions than what has currently been
explored in the literature. For instance, models could use other treatments such as antibiotics and
mechanical ventilation, contextualize actions using the patient’s physiological state, or limit the
training data to only the most important decision points. Future work should incorporate clinician
guidance on how to meaningfully encode treatments to further test the effects of action information.

This work highlights the importance of diversity in data sources when building medical recom-
mendation models. While it has been extremely valuable in developing and exploring ways to
improve sepsis treatment, the MIMIC dataset is sourced from a single well-resourced hospital in
Boston (Johnson et al., 2020), where clinicians are likely to be consistent and compliant with exist-
ing practice guidelines. Human-centered ML efforts undertaken in collaboration with clinicians and
medical data experts can also inspire more clinically-relevant and performant model formulations,
such as focusing on the emergency department (a higher-stress environment that is less specialized
towards sepsis than the ICU) or building smaller models that are relevant to specific subgroups of
patients (Sivaraman et al., 2023). Through these research directions, applied ML efforts may be able
to better utilize available observational data to improve sepsis treatment recommendation.
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